Abstract

Background/Aims: This study aimed to investigate whether exogenous hydrogen sulfide (H<sub>2</sub>S) confered cardiac protection against high glucose (HG)-induced injury by inhibiting NLRP3 inflammasome activation via a specific TLR4/NF-κB pathway. Methods: H9c2 cardiac cells were exposed to 33 mM glucose for 24 h to induce HG-induced cytotoxicity. The cells were pretreated with NaHS (a donor of H<sub>2</sub>S) before exposure to HG. Cell viability, cell apoptosis, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and TLR4, NF-κB, NLRP3 inflammasome, IL-1β, IL-18 and caspase-3 expression were measured by standard methods. Results: H<sub>2</sub>S attenuated HG-induced cell apoptosis, ROS expression and loss of MMP and reduced the expression of NLRP3, ASC, pro-caspase-1, caspase-1, IL-1β, IL-18 and caspase-3. In addition, H<sub>2</sub>S inhibited the HG-induced activation of TLR4 and NF-κB. Furthermore, NLRP3 inflammasome activation was regulated by the TLR4 and NF-κB pathway. Conclusion: The present study demonstrated for the first time that H<sub>2</sub>S appears to suppress HG-induced cardiomyocyte inflammation and apoptosis by inhibiting the TLR4/NF-κB pathway and its downstream NLRP3 inflammasome activation. Thus H<sub>2</sub>S might possess potential in the treatment of diabetic cardiomyopathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call