Abstract

BackgroundsIn vitro fertilization involves high dosage gonadotropin stimulation, which apparently has some negative impact on follicular endocrine function. As chorionic gonadotropin stimulation has been shown to increase the blood-follicular permeability in animal models, this raises the question if such an effect also applies to gonadotropins in humans, possibly affecting the endocrine follicular milieu.FindingsFollicular fluid and serum were collected at the time of follicular aspiration in in vitro fertilisation without (Natural cycle IVF, n = 24) and with (conventional gonadotropin stimulated IVF, n = 31) gonadotropin stimulation. The concentration of the extra-ovarian hormones prolactin and cortisol were analysed by immunoassays.ResultsMedian serum prolactin and cortisol concentrations were 12.3 ng/mL and 399 nmol/L without versus 32.2 ng/mL and 623 nmol/L with gonadotropin stimulation. The corresponding concentrations in follicular fluid were 20.6 ng/mL and 445 nmol/L versus 28.8 ng/ml and 456 nmol/L for prolactin and cortisol. As a consequence, mean follicular fluid:serum ratios were significantly reduced under gonadotropin stimulation (prolactin p = 0.0138, cortisol p = 0.0001). As an enhanced blood-follicular permeability and transportation, induced by gonadotropin stimulation, would result in increased instead of decreased follicular fluid:serum ratios as found in this study, it can be assumed that this does not affect extra-ovarian protein and steroid hormones as illustrated by prolactin and cortisol.ConclusionsThe model of serum follicular fluid:serum ratio of hormones, produced outside the ovaries, did not reveal a gonadotropin induced increased blood-follicular transportation capacity. Therefore it can be assumed that the effect of gonadotropins on follicular endocrine function is not due to an increased ovarian permeability of extra-ovarian hormones.

Highlights

  • Backgrounds: In vitro fertilization involves high dosage gonadotropin stimulation, which apparently has some negative impact on follicular endocrine function

  • Mean follicular fluid:serum ratios were significantly reduced under gonadotropin stimulation

  • It can be assumed that the effect of gonadotropins on follicular endocrine function is not due to an increased ovarian permeability of extra-ovarian hormones

Read more

Summary

Methods

Fifty-five women underwent either cIVF (n = 31) or NCIVF (n = 24) according to their personal preference. For cIVF, the antagonist protocol was used. The study was approved by the local ethical committee and patient’s approval was given by written consent. HMG (150 to 300 IU per day of human menopausal gonadotropin, Menogon HP®, Ferring AG, Baar, Switzerland) treatment was initiated between day 3–5 of the menstrual cycle. GnRH antagonists (Orgalutran®, MSD Merck Sharp & Dohme GmbH, Lucerne, Switzerland) were first administered between day 6–7 of the menstrual cycle and continued until ovulation induction. Once an adaequate ovarian response had been confirmed, urinary human chorionic gonadotropin (hCG) (Predalon®, MSD Merck Sharp & Dohme GmbH, Lucerne, Switzerland) were administered to induce ovulation 36 hours before oocyte retrieval

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.