Abstract

Primary neurons in culture from chick embryo cerebral hemispheres were treated with a mixture of gangliosides added to the growth medium (final concentration: 10(-5)M and 10(-8)M) from the 3rd to the 6th day in vitro. Under these conditions methylation processes measured with [3H] and [35S] methionine and [3H]ethanolamine as precursors showed an increased methylation of [3H]ethanolamine containing phospholipids, a correspondent increased conversion of these compounds to [3H]choline containing phospholipids, and a general increased methylation of trichloroacetic acid precipitable macromolecules containing labeled methionine. A small increase in protein synthesis was observed after incubation of neurons with [3H]- and [35S]methionine. This was confirmed after electrophoretic separation of a protein extract with increased 3H- and 35S-labeling in protein bands with moecular weights between 50 and 60 KDaltons. A protein band of about 55 KDaltons appeared to be preferentially labelled when [3H] methionine was the precursor. The treatment with gangliosides increased the incorporation of [methyl-3H] label after incubation of neurons with [3H] methionine, into total DNA and decreased that of total RNA. The treatment of neurons in culture with exogenous gangliosides hence affects differently methylation processes, a finding which may confirm the involvement of gangliosides on the intracellular mediation of neuronal information mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.