Abstract
Controlling fibrosis is an essential part of regenerating the post-ischemic heart. In the post-ischemic heart, fibroblasts differentiate to myofibroblasts that produce collagen-rich matrix to physically stabilize the infarct area. Infarct models in adult mice result in permanent scarring unlike newborn animals which fully regenerate. Decellularized extracellular matrix (dECM) hydrogels derived from early-aged hearts have been shown to be a transplantable therapy that preserves heart function and stimulates cardiomyocyte proliferation and vascularization. In this study, we investigate the anti-fibrotic effects of injectable dECM hydrogels in a cardiac explant model in the context of age-associated tissue compliance. Treatments with adult and fetal dECM hydrogels were tested for molecular effects on cardiac fibroblast activation and fibrosis. Altered sensitivity of fibroblasts to the mechanosignaling of the remodeling microenvironment was evaluated by manipulating the native extracellular matrix in explants and also with elastomeric substrates in the presence of dECM hydrogels. The injectable fetal dECM hydrogel treatment decreases fibroblast activation and contractility and lowers the stiffness-mediated increases in fibroblast activation observed in stiffened explants. The anti-fibrotic effect of dECM hydrogel is most observable at highest stiffness. Experiments with primary cells on elastomeric substrates with dECM treatment support this phenomenon. Transcriptome analysis indicated that dECM hydrogels affect cytoskeleton related signaling including Macrophage capping protein (CAPG) and Leupaxin (LPXN). CAPG was down-regulated by the fetal dECM hydrogel. LPXN expression was decreased by stiffening the explants; however, this effect was reversed by dECM hydrogel treatment. Pharmacological disruption of cytoskeleton polymerization lowered fibroblast activation and CAPG levels. Knocking down CAPG expression with siRNA inhibited fibroblast activation and collagen deposition. Collectively, fibroblast activation is dependent on cooperative action of extracellular molecular signals and mechanosignaling by cytoskeletal integrity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.