Abstract

Rice (Oryza sativa L.) is highly sensitive to cold stress, which leads to large reductions in rice yield at the booting stage. In this study, Kongyu131 and Kenjiandao6 rice cultivars with different levels of cold stress sensitivity were sprayed with diethylaminoethyl hexanoate (DA-6) concentrations of 500, 200, 20, 2, 0.2, and 0 mg/L one day before undergoing cold water stress (CWS). We analyzed changes in yield and its factors, dry matter production, stem characteristics, and physiological and biochemical characteristics of the rice plants. The results showed that DA-6 increased peroxidase activity, delayed nitrogen and chlorophyll degradation, maintained soluble protein and potassium contents, and suppressed the accumulation of malondialdehyde in the leaves of both cultivars under CWS. DA-6 also increased the phosphorous content and superoxide dismutase activity in Kenjiandao6 under CWS; however, in Kongyu131, DA-6 increased the soluble sugar content. In addition, DA-6 treatment increased the weight of the panicle at maturity, and of the leaf, panicle, and stem-sheath at heading in both cultivars. The lengths of the panicle, the top first internode, the export rate of stem-sheath, translocation rate of stem-sheath, and export of stem-sheath from heading to maturity were increased in Kenjiandao6; however, in Kongyu131, DA-6 increased the dry weight ratio of panicle to total plant and reduced the dry weight ratio of stem-sheath to total plant at maturity. Furthermore, DA-6 improved yield in both cultivars, mainly by increasing the grain weight in the inferior grains (IG) and middle grains (MG) under CWS. DA-6 increased the grain weight in the IG and MG in Kenjiandao6 mainly by enhancing the seed setting rate and number of filled grains (NFG) in the IG and MG, and in Kongyu131 by improving the NFG in MG and IG. The optimal concentration of DA-6 to alleviate CWS was 2 mg/L. In conclusion, exogenous DA-6 was effective for maintaining dry matter production and physiology in two early japonica rice cultivars under CWS at booting, thereby improving cold tolerance and enhancing yield. The less cold-tolerant cultivar Kenjiandao6 was more sensitive to the effects of DA-6 and displayed better results than the more cold-tolerant cultivar Kongyu131.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call