Abstract

Ascorbate levels and redox states, as well as the activities of the enzymes of ascorbate metabolism, were analyzed in roots of tomato seedlings during the culture on a medium supplemented with auxin and compared to the control cultured on an auxin-free medium. Biochemical parameters were determined separately in the distal part of the root where the inhibitory effect of auxin on root elongation growth is observed and in the proximal half on the organ which reacts to auxin treatment with increased lateral root proliferation. ASC peroxidase activity was found to be stimulated by auxin treatment in the lateral-root forming part of the root. This effect was not observed in the distal part of the organ. On the other hand, ASC oxidase activity was raised by auxin exclusively in the distal part of the root. An inhibitory effect of auxin supplementation to the medium on ASC—reducing enzymes was observed. The dehydroascorbate reductase activity was found to be inhibited by auxin only in the proximal part, while the activity of monodehydroascorbate reductase in both, the proximal and distal parts of the root. Ascorbate content increased in roots during culture irrespective of the presence of auxin. However, auxin treatment resulted in higher DHA levels and more significant participation of DHA in the total ascorbate pool when compared to the control grown on the auxin-free medium. Similar to auxin, adding DHA to the culture medium stimulated lateral root formation and inhibited primary root elongation. In contrast to DHA, ASC treatment affected significantly neither lateral root formation nor primary root growth and partly reversed the stimulatory effect of IAA on root formation and the inhibitory effect on root elongation. These results suggest that auxin induced changes in ascorbate metabolism may be involved in developmental reactions in tomato roots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call