Abstract

Visual perceptual learning (VPL) refers to the improvement in performance on a visual task due to practice. A hallmark of VPL is specificity, as improvements are often confined to the trained retinal locations or stimulus features. We have previously found that exogenous (involuntary, stimulus-driven) and endogenous (voluntary, goal-driven) spatial attention can facilitate the transfer of VPL across locations in orientation discrimination tasks mediated by contrast sensitivity. Here, we investigated whether exogenous spatial attention can facilitate such transfer in acuity tasks that have been associated with higher specificity. We trained observers for 3 days (days 2–4) in a Landolt acuity task (Experiment 1) or a Vernier hyperacuity task (Experiment 2), with either exogenous precues (attention group) or neutral precues (neutral group). Importantly, during pre-tests (day 1) and post-tests (day 5), all observers were tested with neutral precues; thus, groups differed only in their attentional allocation during training. For the Landolt acuity task, we found evidence of location transfer in both the neutral and attention groups, suggesting weak location specificity of VPL. For the Vernier hyperacuity task, we found evidence of location and feature specificity in the neutral group, and learning transfer in the attention group—similar improvement at trained and untrained locations and features. Our results reveal that, when there is specificity in a perceptual acuity task, exogenous spatial attention can overcome that specificity and facilitate learning transfer to both untrained locations and features simultaneously with the same training. Thus, in addition to improving performance, exogenous attention generalizes perceptual learning across locations and features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call