Abstract

Rice seedlings grown under 50μM cadmium alone or in combination with 5μMmethyl jasmonate were investigated for Cd-induced oxidative injury at 3, 7 and 10days of treatment. MeJA treatments alone did not have any significant change in antioxidant enzyme activities or levels of H2O2 and O2− in roots/shoots, as compared to controls during 3–10days. The Cd-stressed plants When supplemented with exogenous MeJA revealed significant and consistent changes in activities of antioxidant enzymes CAT, SOD, POD and GR paralleled with an increased GSH-pools than that in plants subjected to Cd-stress alone. Synthesis of GSH driven by increasing demand for GSH in response to Cd-induced oxidative stress in rice was evident. Increased activity of LOX under Cd-stress was noted. Results suggest enhanced Cd-tolerance, lowered Cd2+ uptake, an improved membrane integrity and ‘switching on’ of the JA-biosynthesis by LOX in the Cd-stressed rice roots/shoots exposed to MeJA. Exposure to MeJA improved antioxidant response and accumulation of antioxidants which perhaps lowered the Cd-induced oxidative stress in rice. It is this switching on/off of the JA-biosynthesis and ROS mediated signal transduction pathway involving glutathione homeostasis via GR which helps MeJA to mitigate Cd-induced oxidative injury in rice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.