Abstract

Hydrogen sulfide (H2S) is an endogenous mediator, synthesized from l-cysteine by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) or 3-mercaptopyruvate sulfurtransferase (3-MST). The mechanism(s) involved in H2S-gastroprotection against ischemia/reperfusion (I/R) lesions and their time-dependent progression into deeper gastric ulcerations have been little studied. We determined the effect of l-cysteine, H2S-releasing NaHS or slow H2S releasing compound GYY4137 on gastric blood flow (GBF) and gastric lesions induced by 30 min of I followed by 3, 6, 24 and 48 h of R. Role of endogenous prostaglandins (PGs), afferent sensory nerves releasing calcitonin gene-related peptide (CGRP), the gastric expression of hypoxia inducible factor (HIF)-1α and anti-oxidative enzymes were examined. Rats with or without capsaicin deactivation of sensory nerves were pretreated i.g. with vehicle, NaHS (18–180 μmol/kg) GYY4137 (90 μmol/kg) or l-cysteine (0.8–80 μmol/kg) alone or in combination with (1) indomethacin (14 μmol/kg i.p.), SC-560 (14 μmol/kg), celecoxib (26 μmol/kg); (2) capsazepine (13 μmol/kg i.p.); and (3) CGRP (2.5 nmol/kg i.p.). The area of I/R-induced gastric lesions and GBF were measured by planimetry and H2-gas clearance, respectively. Expression of mRNA for CSE, CBS, 3-MST, HIF-1α, glutathione peroxidase (GPx)-1, superoxide dismutase (SOD)-2 and sulfide production in gastric mucosa compromised by I/R were determined by real-time PCR and methylene blue method, respectively. NaHS and l-cysteine dose-dependently attenuated I/R-induced lesions while increasing the GBF, similarly to GYY4137 (90 μmol/kg). Capsaicin denervation and capsazepine but not COX-1 and COX-2 inhibitors reduced NaHS- and l-cysteine-induced protection and hyperemia. NaHS increased mRNA expression for SOD-2 and GPx-1 but not that for HIF-1α. NaHS which increased gastric mucosal sulfide release, prevented further progression of acute I/R injury into deeper gastric ulcers at 6, 24 and 48 h of R. We conclude that H2S-induced gastroprotection against I/R-injury is due to increase in gastric microcirculation, anti-oxidative properties and afferent sensory nerves activity but independent on endogenous prostaglandins.

Highlights

  • Hydrogen sulfide (H2 S) plays an important role as intracellular gaseous transmitter and contributes to many physiological and pathological processes [1,2]

  • Endogenous H2 S is synthesized from L-cysteine by the activity of two main pirydoxal-5-phosphate (P5P, vitamin B6 ) dependent enzymes: cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) [8,9] or by 3-mercaptopyruvate sulfurtransferase (3-MST) in co-activity with cysteine aminotransferase [10]

  • Exposure to I followed by 3 h of R caused the extensive hemorrhagic erosions in gastric mucosa of rats pretreated with vehicle-control (Figure 1A)

Read more

Summary

Introduction

Hydrogen sulfide (H2 S) plays an important role as intracellular gaseous transmitter and contributes to many physiological and pathological processes [1,2]. This molecule exerts vasoactive activity to nitric oxide (NO) and carbon monoxide (CO), all three considered to act as endogenous gaseous mediators [3,4,5,6]. H2 S plays an important role in the regulation of the physiological functions of gastrointestinal (GI) tract and the mechanism of GI-integrity maintenance [11].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call