Abstract

To validate a new particulate embolization method using degradable starch microspheres (DSM) and intraarterial exogenous amylase administration, which allow for regulated temporary cerebral arterial embolization without compromising tissue perfusion. Twenty-four male New Zealand rabbits were randomly divided into three groups. All animals underwent routine angiography. The control group received no additional intervention. In the ischemia group, 0.2ml DSM was administered to the animals via the right carotid artery with pulsed, gentle injections to induce ischemia in the cerebral microcirculation. Animals in the reperfusion group received 0.05 ml of exogenous amylase along with DSM administration. Six hours after the procedure, the animals were sacrificed and histopathological analysis was performed. The ischemia group was the most adversely affected group by embolization, with the highest number of pyknotic neurons. The reperfusion group, which received exogenous amylase, had lower pyknotic neurons than the ischemia group. The pyknotic neuron count was similar in some regions between reperfusion and control groups. Exogenous amylase can rapidly attenuate cerebral ischemia caused by microembolization with DSM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.