Abstract

Exoplanet atmosphere studies are often enriched by synergies with brown dwarf analogs. However, many key molecules commonly seen in brown dwarfs have yet to be confirmed in exoplanet atmospheres. An important example is chromium hydride (CrH), which is often used to probe atmospheric temperatures and classify brown dwarfs into spectral types. Recently, tentative evidence for CrH was reported in the low-resolution transmission spectrum of the hot Jupiter WASP-31b. Here, we present high spectral resolution observations of WASP-31b’s transmission spectrum from GRACES/Gemini North and UVES/Very Large Telescope. We detect CrH at 5.6σ confidence, representing the first metal hydride detection in an exoplanet atmosphere at high spectral resolution. Our findings constitute a critical step in understanding the role of metal hydrides in exoplanet atmospheres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call