Abstract
Proteins participating in vesicular docking and fusion have been identified in the nervous system. Such proteins appear to be important for the molecular regulation of exocytosis also in non-neuronal cells. The enterochromaffin-like (ECL) cells of the gastric acid-secreting (oxyntic) mucosa secrete histamine and chromogranin A-derived peptides, such as pancreastatin. Using immunohistochemistry, we have examined whether the ECL cells of the rat stomach, identified with antibodies to histidine decarboxylase (HDC, the histamine-forming enzyme), express the same exocytotic proteins as neurons. The ECL cells displayed immunoreactivity for synaptophysin, synaptotagmin III, vesicle-associated membrane protein-2 (VAMP-2), cysteine string protein (CSP), vesicular monoamine transporter-2 (VMAT-2), synaptosomal-associated protein of 25 kDa (SNAP-25), syntaxin, and Munc-18, but not for synaptotagmin I/II and VAMP-1. Synaptophysin and VMAT-2 could be detected not only in the ECL cells, but also in a population of HDC-negative cells. The demonstration of synaptotagmin III in only a limited number of ECL cells suggests the existence of a subpopulation of ECL cells. The results show that several exocytotic proteins, previously identified in neurons, are present in rat stomach ECL cells. Hence, proteins engaged in vesicular docking and in the fusion of granule/vesicle membrane with plasma membrane seem to exist in both neurons and endocrine cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.