Abstract

Since it had been previously shown that in Paramecium cells exocytosis involves the dephosphorylation of a 65-kD phosphoprotein (PP), we tried to induce exocytotic membrane fusion by exogenous phosphatases (alkaline phosphatase or calcineurin [CaN]). The occurrence of calmodulin (CaM) at preformed exocytosis sites (Momayezi, M., H. Kersken, U. Gras, J. Vilmart-Seuwen, and H. Plattner, 1986, J. Histochem. Cytochem., 34:1621-1638) and the current finding of the presence of the 65-kD PP and of a CaN-like protein in cell surface fragments ("cortices") isolated from Paramecium cells led us to also test the effect of antibodies (Ab) against CaM or CaN on exocytosis performance. Microinjected anti-CaN Ab strongly inhibit exocytosis. (Negative results with microinjected anti-CaM Ab can easily be explained by the abundance of CaM.) Alternatively, microinjection of a Ca2+-CaM-CaN complex triggers exocytosis. The same occurs with alkaline phosphatase. All these effects can also be mimicked in vitro with isolated cortices. In vitro exocytosis triggered by adding Ca2+-CaM-CaN or alkaline phosphatase is paralleled by dephosphorylation of the 65-kD PP. Exocytosis can also be inhibited in cortices by anti-CaM Ab or anti-CaN Ab. In wild-type cells, compounds that inhibit phosphatase activity, but none that inhibit kinases or proteases, are able to inhibit exocytosis. Exocytosis cannot be induced by phosphatase injection in a membrane-fusion-deficient mutant strain (nd9-28 degrees C) characterized by a defective organization of exocytosis sites (Beisson, J., M. Lefort-Tran, M. Pouphile, M. Rossignol, and B. Satir, 1976, J. Cell Biol., 69:126-143). We conclude that exocytotic membrane fusion requires an adequate assembly of molecular components to allow for the dephosphorylation of a 65-kD PP and that this step is crucial for the induction of exocytotic membrane fusion in Paramecium cells. In vivo this probably involves a Ca2+-CaM-stimulated CaN-like PP phosphatase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.