Abstract
Cross-view image generation has been recently proposed to generate images of one view from another dramatically different view. In this paper, we investigate exocentric (third-person) view to egocentric (first-person) view image generation. This is a challenging task since egocentric view sometimes is remarkably different from exocentric view. Thus, transforming the appearances across the two views is a nontrivial task. To this end, we propose a novel Parallel Generative Adversarial Network (P-GAN) with a novel cross-cycle loss to learn the shared information for generating egocentric images from exocentric view. We also incorporate a novel contextual feature loss in the learning procedure to capture the contextual information in images. Extensive experiments on the Exo-Ego datasets [1] show that our model outperforms the state-of-the-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.