Abstract

Periodate oxidation showed that the O-acetyl groups in the polysaccharide sterically affected the rate but not the extent of oxidation of the D-mannose residues, two-thirds of which were glycosidically substituted at C2by a D-glucuronic acid residue and one-third of which was linked as a terminal side-chain residue. The D-glucose and D-glucuronic acid residues oxidized by periodate were substituted at C4, but both were more resistant to oxidation than were the D-mannose residues. One-third of the D-glucose residues and a significant quantity of the D-glucuronic acid residues were inert to vigorous periodate oxidation and may bear side-chain residues. Quantitative recovery of the periodate-stable D-glucose residues as 2-O-β-D-glucopyranosyl-D-erythritol, after the oxidized polysaccharide was reduced with sodium borohydride and hydrolyzed with mild acid, revealed that two-thirds of the D-glucose residues were in pairs linked (β, 1 → 4). The pyruvic acid linkage in the polysaccharide was established as a 4,6-O-1-carboxyethylidene ketal attached to a terminal D-glucose side-chain residue. The structure of the polysaccharide is discussed in relation to its anomalous viscosity behavior in salt solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.