Abstract

BackgroundBiopolymers have various applications in medicine, food and petroleum industries. The ascomycetous fungus Ophiocordyceps dipterigena BCC 2073 produces an exobiopolymer, a (1→3)-β-D-glucan, in low quantity under screening conditions. Optimization of O. dipterigena BCC 2073 exobiopolymer production using experimental designs, a scale-up in 5 liter bioreactor, analysis of molecular weight at different cultivation times, and levels of induction of interleukin-8 synthesis are described in this study.ResultsIn order to improve and certify the productivity of this strain, a sequential approach of 4 steps was followed. The first step was the qualitative selection of the most appropriate carbon and nitrogen sources (general factorial design) and the second step was quantitative optimization of 5 physiological factors (fractional factorial design). The best carbon and nitrogen source was glucose and malt extract respectively. From an initial production of 2.53 g·L-1, over 13 g·L-1 could be obtained in flasks under the improved conditions (5-fold increase). The third step was cultivation in a 5 L bioreactor, which produced a specific growth rate, biomass yield, exobiopolymer yield and exobiopolymer production rate of 0.014 h-1, 0.32 g·g-1 glucose, 2.95 g·g biomass-1 (1.31 g·g-1 sugar), and 0.65 g.(L·d)-1, respectively. A maximum yield of 41.2 g·L-1 was obtained after 377 h, a dramatic improvement in comparison to the initial production. In the last step, the basic characteristics of the biopolymer were determined. The molecular weight of the polymer was in the range of 6.3 × 105 - 7.7 × 105 Da. The exobiopolymer, at 50 and 100. μg·mL-1, induced synthesis in normal dermal human fibroblasts of 2227 and 3363 pg·mL-1 interleukin-8 respectively.ConclusionsHigh exobiopolymer yield produced by O. dipterigena BCC 2073 after optimization by qualitative and quantitative methods is attractive for various applications. It induced high IL-8 production by normal dermal fibroblasts, which makes it promising for application as wound healing material. However, there are still other possible applications for this biopolymer, such as an alternative source of biopolymer substitute for hyaluronic acid, which is costly, as a thickening agent in the cosmetic industry due to its high viscosity property, as a moisturizer, and in encapsulation.

Highlights

  • Biopolymers have various applications in medicine, food and petroleum industries

  • We describe here an optimization of O. dipterigena BCC 2073 exobiopolymer production using experimental designs, the production in a 5-liter bioreactor, an analysis of molecular weight at different cultivation times, and the level of induction of IL-8 synthesis by normal dermal fibroblasts

  • As glucose is a component of the biopolymer [8], gave the highest biopolymer production, and is available at a reasonable price, it was selected for use in further experiments

Read more

Summary

Introduction

Biopolymers have various applications in medicine, food and petroleum industries. The ascomycetous fungus Ophiocordyceps dipterigena BCC 2073 produces an exobiopolymer, a (1 3)-β-D-glucan, in low quantity under screening conditions. Exopolysaccharides (EPS), synthesized by various microbes growing on different carbon sources, are secreted as slime or jelly-like material [1] These microbial biopolymers are classified as homopolysaccharides and heteropolysaccharides depending upon their chemical structures. The homo- and heteropolysaccharides are synthesized by single and multi-enzyme systems on either single carbon or Exobiopolymers have specific applications in medicine, food and petroleum industries [29] depending on their structures and properties. Exobiopolymer from Ophiocordyceps dipterigena BCC 2073 is a potent wound dressing material due to its appropriate biological and physiological properties. It is biocompatible, non-cytotoxic and a strong inducer of interleukin-8 (IL-8), a cytokine responsible for enhancing wound healing process [7,8]. The exobiopolymer is composed of (1T3)-β-D-glucan backbone, substituted at O-6 with side chains of (1T6)-β-D-pyranosyl units and contains 1.86% arabinose, 29.08% mannose, 25.86% galactose and 43.05% glucose [8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.