Abstract
We study exit times from a set for a family of multivariate autoregressive processes with normally distributed noise. By using the large deviation principle, and other methods, we show that the asymptotic behavior of the exit time depends only on the set itself and on the covariance matrix of the stationary distribution of the process. The results are extended to exit times from intervals for the univariate autoregressive process of order n, where the exit time is of the same order of magnitude as the exponential of the inverse of the variance of the stationary distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Stochastic Processes and their Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.