Abstract

In this article, we consider kinematical considerations of a rigid body rotating around a given fixed point in a Newtonian force field exerted by an attractive center with a rotating couple about their principal axes of inertia. The kinematic equations and their well-known three elementary integrals of the problem are introduced. The existence properties of the algebraic integrals are considered. Besides, we search as a special case of the fourth algebraic integral for the problem of the rigid body’s motion around a fixed point under the action of a Newtonian force field with an orbiting couple. Lagrange’s case and Kovalevskaya’s one are obtained. The large parameter is used for satisfying the existing conditions of the algebraic integrals. The comparison between the obtained results and the previous ones is arising. The numerical solutions of the regulating system of motion are obtained utilizing the fourth-order Runge-Kutta method and are plotted in some figures to illustrate the positive impact of the imposed forces and torques on the behavior of the body at any time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.