Abstract

We study first-order logic (FO) over the structure consisting of finite words over some alphabet $A$, together with the (non-contiguous) subword ordering. In terms of decidability of quantifier alternation fragments, this logic is well-understood: If every word is available as a constant, then even the $\Sigma_1$ (i.e., existential) fragment is undecidable, already for binary alphabets $A$. However, up to now, little is known about the expressiveness of the quantifier alternation fragments: For example, the undecidability proof for the existential fragment relies on Diophantine equations and only shows that recursively enumerable languages over a singleton alphabet (and some auxiliary predicates) are definable. We show that if $|A|\ge 3$, then a relation is definable in the existential fragment over $A$ with constants if and only if it is recursively enumerable. This implies characterizations for all fragments $\Sigma_i$: If $|A|\ge 3$, then a relation is definable in $\Sigma_i$ if and only if it belongs to the $i$-th level of the arithmetical hierarchy. In addition, our result yields an analogous complete description of the $\Sigma_i$-fragments for $i\ge 2$ of the pure logic, where the words of $A^*$ are not available as constants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.