Abstract

In this article, we prove the existence and uniqueness of the solution of the homogeneous generalized Schrödinger equation of order m in the periodic distributional space P0, where m is an even number not a multiple of four. Furthermore, we prove that the solution depends continuously respect to the initial data in P0. Introducing a family of weakly continuous operators, we prove that this family is a group in P0. Then, with this family of operators, we get a fine version of the existence and dependency continuous theorem obtained. Finally, we give the conclusions and remarks derived from this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.