Abstract

The Monge-Ampère type equations over bounded convex domains arise in a host of geometric applications. In this paper, we focus on the Dirichlet problem for a class of Monge-Ampère type equations, which can be degenerate or singular near the boundary of convex domains. Viscosity subsolutions and viscosity supersolutions to the problem can be constructed via comparison principle. Finally, we demonstrate the existence, uniqueness and a series of interior regularities (including W2,p with p∈(1,+∞), C1,μ with μ∈(0,1), and C∞) of the viscosity solution to the problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.