Abstract

We consider the three-dimensional flow through an aperture in a plane either with a prescribed flux or pressure drop condition. We discuss the existence and uniqueness of solutions for small data in weighted spaces and derive their complete asymptotic behaviour at infinity. Moreover, we show that each solution with a bounded Dirichlet integral, which has a certain weak additional decay, behaves like O(r −2) as r=¦x¦→∞ and admits a wide jet region. These investigations are based on the solvability properties of the linear Stokes system in a half space ℝ + 3 . To investigate the Stokes problem in ℝ + 3 , we apply the Mellin transform technique and reduce the Stokes problem to the determination of the spectrum of the corresponding invariant Stokes-Beltrami operator on the hemisphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.