Abstract
We investigate the Cauchy problem for the Vlasov–Poisson system with radiation damping. By virtue of energy estimate and a refined velocity average lemma, we establish the global existence of nonnegative weak solution and asymptotic behavior under the condition that initial data have finite mass and energy. Furthermore, by building a Gronwall inequality about the distance between the Lagrangian flows associated to the weak solutions, we can prove the uniqueness of weak solution when the initial data have a higher order velocity moment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.