Abstract

This article continues to study the linearized Chandrasekhar equation. We use the Hilbert-type inequalities to accurately calculate the norm of the Fredholm integral operator and obtain the exact range for the parameters of the linearized Chandrasekhar equation to ensure that there is a unique solution to the equation in $$L^p$$ space. A series of examples that can accurately calculate the norm of Fredholm integral operator shows that the Chandrasekhar kernel functions do not need to meet harsh conditions. As the symbolic part of the Chandrasekhar kernel function and the non-homogeneous terms satisfy the exponential decay condition, we yield a normed convergence rate of the approximation solution in $$L^p$$ sense, which adds new results to the theory of radiation transfer in astrophysics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.