Abstract

We consider space-periodic evolutionary and travelling-wave solutions to the regularized long-wave equation (RLWE) with damping and forcing. We establish existence, uniqueness and smoothness of the evolutionary solutions for smooth initial conditions, and global in time spatial analyticity of such solutions for analytical initial conditions. The width of the analyticity strip decays at most polynomially. We prove existence of travelling-wave solutions and uniqueness of travelling waves of a sufficiently small norm. The importance of damping is demonstrated by showing that the problem of finding travelling-wave solutions to the undamped RLWE is not well-posed. Finally, we demonstrate the asymptotic convergence of the power series expansion of travelling waves for a weak forcing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.