Abstract

SynopsisThe existence of solutions to equations in normed spaces is proved when the nonlinear part of the equation satisfies growth and asymptotic conditions, whether the linear part is invertible or not. For this, we use the coincidence degree theory developed by Mawhin. We apply our abstract results to boundary value problems for nonlinear vector ordinary differential equations. In particular, we consider the Picard boundary value problem at the first eigenvalue and the periodic boundary value problem at resonance. In both cases, the nonlinear term can be of superlinear type. Also, necessary and sufficient conditions of Landesman-Lazer type are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call