Abstract

We study existence, bifurcation and stability of two-dimensional optical solitons in the framework of fractional nonlinear Schrödinger equation, characterized by its Lévy index, with self-focusing and self-defocusing saturable nonlinearities. We demonstrate that the fractional diffraction system with different Lévy indexes, combined with saturable nonlinearity, supports two-dimensional symmetric, antisymmetric and asymmetric solitons, where the asymmetric solitons emerge by way of symmetry breaking bifurcation. Different scenarios of bifurcations emerge with the change of stability: the branches of asymmetric solitons split off the branches of unstable symmetric solitons with the increase of soliton power and form a supercritical type bifurcation for self-focusing saturable nonlinearity; the branches of asymmetric solitons bifurcates from the branches of unstable antisymmetric solitons for self-defocusing saturable nonlinearity, featuring a convex shape of the bifurcation loops: an antisymmetric soliton loses its stability via a supercritical bifurcation, which is followed by a reverse bifurcation that restores the stability of the symmetric soliton. Furthermore, we found a scheme of restoration or destruction the symmetry of the antisymmetric solitons by controlling the fractional diffraction in the case of self-defocusing saturable nonlinearity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call