Abstract
In this paper, we study the nonlocal boundary value problem for a nonlinear fractional differential coupled system with fractional order impulses. Applying Nonlinear Alternative of Leray–Schauder, we obtain some new existence results for this system. As application, an interesting example is given to illustrate the effectiveness of our main result.
Highlights
In describing some phenomena and processes of many fields such as physics, chemistry, aerodynamics, electrodynamics of a complex medium, polymer rheology, capacitor theory, electrical circuits, biology, control theory, fitting of experimental data, and so on, the fractional order calculus is an excellent and more accurate tool than the integral order calculus
There have been many papers focused on boundary value problems of fractional ordinary differential equations
The nonlocal boundary value problems have been widely studied by many scholars because of their extensive applications in, e.g., blood flow problems, chemical engineering, thermo-elasticity, underground water flow, population dynamics, and so forth
Summary
In describing some phenomena and processes of many fields such as physics, chemistry, aerodynamics, electrodynamics of a complex medium, polymer rheology, capacitor theory, electrical circuits, biology, control theory, fitting of experimental data, and so on, the fractional order calculus is an excellent and more accurate tool than the integral order calculus. There have been many papers focused on boundary value problems of fractional ordinary differential equations (see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]). The nonlocal boundary value problems of fractional-order differential equations constitute a class of very interesting and important problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.