Abstract
We prove a compactness principle for the anisotropic formulation of the Plateau problem in any codimension, in the same spirit of the previous works of the authors. In particular, we perform a new strategy for the proof of the rectifiability of the minimal set, based on the new anisotropic counterpart of the Allard rectifiability theorem proved in De Philippis et al. (Commun Pure Appl Math 71(6):1123–1148, 2016). As a consequence we provide a new proof of the Reifenberg existence theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.