Abstract
In this paper we study the following nonlinear elliptic problem with Dirichlet boundary condition: $-\Delta u =K(x)u^p$, $u>0$ in $\Omega$, $u =0$ on $ \partial \Omega$, where $\Omega$ is a bounded, smooth domain of $\mathbb R^n$, $n\geq 4$ and $p+1=2n/(n-2)$ is the critical Sobolev exponent. Using dynamical and topological methods involving the study of the critical points at infinity of the associated variational problem, we prove some existence results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.