Abstract
<abstract><p>In this paper, we investigate the existence and uniqueness of solutions to a nonlinear coupled systems of $ (k, \varphi) $-Hilfer fractional differential equations supplemented with nonlocal integro-multi-point boundary conditions. We make use of the Banach contraction mapping principle to obtain the uniqueness result, while the existence results are proved with the aid of Krasnosel'ski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }} $'s fixed point theorem and Leray-Schauder alternative for the given problem. Examples demonstrating the application of the abstract results are also presented. Our results are of quite general nature and specialize in several new results for appropriate values of the parameters $ \beta_1, $ $ \beta_2, $ and the function $ \varphi $ involved in the problem at hand.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.