Abstract
In this paper, we study the $p$-Laplacian problems in the case where $p$ depends on the solution itself. We consider two situations, when $p$ is a local and nonlocal quantity. By using a singular perturbation technique, we prove the existence of weak solutions for the problem associated to the following equation $$ \begin{cases} -\mathrm{d}\mathrm{i}\mathrm{v}(|\nabla u|^{p(u)-2}\nabla u)+|u|^{p(u)-2}u=f & \mbox{in}\; \Omega\\ u=0& \mbox{on}\; \partial\Omega , \end{cases}$$ and also for its nonlocal version. The main goal of this paper is to extend the results established by M. Chipot and H. B. de Oliveira (Math. Ann., 2019, 375, 283-306).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.