Abstract
We present existence principles for the nonlocal boundary-value problem (φ(u(p−1)))′=g(t,u,...,u(p−1), αk(u)=0, 1≤k≤p−1, where p ≥ 2, π: ℝ → ℝ is an increasing and odd homeomorphism, g is a Caratheodory function that is either regular or has singularities in its space variables, and αk: Cp−1[0, T] → ℝ is a continuous functional. An application of the existence principles to singular Sturm-Liouville problems (−1)n(φ(u(2n−)))′=f(t,u,...,u(2n−1)), u(2k)(0)=0, αku(2k)(T)+bku(2k=1)(T)=0, 0≤k≤n−1, is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.