Abstract

In General Relativity there is a maximum mass allowed for neutron stars that, if exceeded, entails their collapse into a black hole. Its precise value depends on details of the nuclear matter equation of state about which we are much more certain thanks to recent progress in low-energy effective theories. The discovery of a two-solar mass neutron star, near that maximum mass, when analyzed with modern equations of state, implies that Newton's gravitational constant in the star cannot exceed its value on Earth by more than 8% at 95% confidence level. This is a remarkable leap of ten orders of magnitude in the gravitational field intensity at which the constant has been constrained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.