Abstract

Evanescent waves are waves that decay or grow exponentially in regions of the space void of interaction. In potential scattering defined by the Schrödinger equation, for a local potential v, they arise in dimensions greater than one and are generally present regardless of the details of v. The approximation in which one ignores the contributions of the evanescent waves to the scattering process corresponds to replacing v with a certain energy-dependent nonlocal potential . We present a dynamical formulation of the stationary scattering for in two dimensions, where the scattering data are related to the dynamics of a quantum system having a non-self-adjoint, unbounded, and nonstationary Hamiltonian operator. The evolution operator for this system determines a two-dimensional analog of the transfer matrix of stationary scattering in one dimension which contains the information about the scattering properties of the potential. Under rather general conditions on v, we establish the strong convergence of the Dyson series expansion of the evolution operator and prove the existence of the transfer matrix for as a densely-defined operator acting in .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.