Abstract

In this paper, firstly, the proper function space is chosen, and the proper expression of the operators is introduced such that the complex large-scale atmospheric motion equations can be described by a simple and abstract equation, by which the definition of the weak solution of the atmospheric equations is made. Secondly, the existence of the weak solution for the atmospheric equations and the steady state equations is proved by using the Galerkin method. The existence of the non-empty global attractors for the atmospheric equations in the sense of the Chepyzhov-Vishik’s definition is obtained by constructing a trajectory attractor set of the atmospheric motion equations. The result obtained here is the foundation for studying the topological structure and the dynamical behavior of the atmosphere attractors. Moreover, the methods used here are also valid for studying the other atmospheric motion models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.