Abstract

A proof is given for the existence and uniqueness of a stationary vacuum solution (M, g, ξ) of the boundary value problem consisting of Einstein's equations in an exterior domain M diffeomorphic to R × Σ (where Σ = R3\B(0, R)) and boundary data depending on the Killing field ξ on ∂Σ. The boundary data must be sufficiently close to that of a stationary, spatially conformally flat vacuum solution .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.