Abstract

Existence and convergence results are proved for a regularized model of dynamic brittle fracture based on the Ambrosio–Tortorelli approximation. We show that the sequence of solutions to the time-discrete elastodynamics, proposed by Bourdin, Larsen & Richardson as a semidiscrete numerical model for dynamic fracture, converges, as the time-step approaches zero, to a solution of the natural time-continuous elastodynamics model, and that this solution satisfies an energy balance. We emphasize that these models do not specify crack paths a priori, but predict them, including such complicated behavior as kinking, crack branching, and so forth, in any spatial dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.