Abstract
We study an equation governed by a discontinuous fully nonlinear operator. Such discontinuities are solution-dependent, which introduces a free boundary. Working under natural assumptions, we prove the existence of Lp-viscosity and strong solutions to the problem. The operator does not satisfy the usual structure conditions and to obtain the existence of solutions we resort to solving approximate problems, combined with a fixed-point argument. We believe our strategy can be applied to other classes of non-variational free boundary problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.