Abstract
In this paper, we shall be concerned with the existence result of the Degenerated unilateral problem associated to the equation of the type Au+g(x,u,∇u)=f- div F, where A is a Leray-Lions operator and g is a Carathéodory function having natural growth with respect to |∇u| and satisfying the sign condition. The second term is such that, f∈L 1 (Ω) and F∈Π i=1 N L p ′ (Ω,w i 1-p ′ ).
Highlights
Let Ω be a bounded open set of RN, p be a real number such that 1 < p < ∞and w = {wi (x), 0 ≤ i ≤ N } be a vector of weight functions on Ω, i.e.each wi (x) is a measurable a.e. strictly positive function on Ω, satisfying some integrability conditions
We consider the obstacle problem associated to the following differential equations
As regards the second member, we suppose that f ∈ L1 (Ω) and that
Summary
(http://ambp.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Publication éditée par le laboratoire de mathématiques de l’université Blaise-Pascal, UMR 6620 du CNRS. Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.