Abstract

We study the following Kirchhoff type problem: \begin{equation*} \left\{ \begin{array}{ccc} -\left(a+b\int_{\Omega}|\nabla u|^2dx \right) \Delta u=f(x,u), &\mbox{in} \Omega, \\ u=0, &\text{on} \partial \Omega. \end{array} \right. \end{equation*} Note that $F(x,t)=\int_0^1 f(x,s)ds$ is the primitive function of $f$. In the first result, we prove the existence of solutions by applying the $G-$Linking Theorem when the quotient $\frac{4F(x,t)}{bt^4}$ stays between $\mu_k$ and $\mu_{k+1}$ allowing for resonance with $\mu_{k+1}$ at infinity. In the second result, for the case that the quotient $\frac{4F(x,t)}{bt^4}$ stays between $\mu_1$ and $\mu'_{2}$ allowing for resonance with $\mu'_{2}$ at infinity, we find a nontrivial solution by using the classical Linking Theorem and argument of the characterization of $\mu'_2$. Meanwhile, similar results are obtained for degenerate problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.