Abstract

In this paper, we study the following class of fractional Choquard-type equations $$\begin{aligned} (-\Delta )^{1/2}u + u=\Big ( I_\mu *F(u)\Big )f(u), \quad x\in \mathbb {R}, \end{aligned}$$where \((-\Delta )^{1/2}\) denotes the 1/2-Laplacian operator, \(I_{\mu }\) is the Riesz potential with \(0<\mu <1\), and F is the primitive function of f. We use variational methods and minimax estimates to study the existence of solutions when f has critical exponential growth in the sense of Trudinger–Moser inequality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.