Abstract

This study evaluated the ability of gamma-aminobutyric acid (GABA), baclofen, monovalent anions, divalent cations, and various combinations thereof to protect solubilized benzodiazepine (BZ) receptors of types 1 and 2, when contained together on the complex, against heat inactivation. Neither anions, cations, nor GABA alone provided significant protection of solubilized BZ receptors against heat, but inclusion of monovalent anions or divalent cations together with 500 microM GABA did afford protection. Monovalent anions combined with GABA (500 microM) provided 50% to full protection. Divalent cations, such as CaCl2 (2.5 mM) or MgCl2 (2.5 mM) in the presence of GABA (500 microM) yielded 45% and 24% protection, respectively. Other divalent cations tested (Zn2+, Hg2+, Co2+, and Ni2+) were poor protectors, even when combined with GABA. Monovalent anions (200 mM NaCl) and divalent cations (5 mM CaCl2) when tested together provided no protection. Similarly, baclofen (the GABA-B agonist) provided no protection, either alone or together with anions or divalent cations. These results indicate that the independent but interacting recognition sites of GABA, BZ, anions, and divalent cations, previously detected in the membrane-bound state, are retained in the solubilized state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.