Abstract

We show that the existence of rational points on smooth varieties over a field can be detected using homotopy fixed points of étale topological types under the Galois action. As our main example we show that the surjectivity statement in Grothendieck's Section Conjecture would follow from the surjectivity of the map from fixed points to continuous homotopy fixed points on the level of connected components. Along the way we define a new model for the continuous étale homotopy fixed point space of a smooth variety over a field under the Galois action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.