Abstract

We consider atomistic systems consisting of interacting particles arranged in atomic lattices whose quasi-static evolution is driven by time-dependent boundary conditions. The interaction of the particles is modeled by classical interaction potentials where we implement a suitable irreversibility condition modeling the breaking of atomic bonding. This leads to a delay differential equation depending on the complete history of the deformation at previous times. We prove existence of solutions and provide numerical tests for the prediction of quasi-static crack growth in particle systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call