Abstract

The paper is devoted to the investigation of a reaction-diffusion system of equations describing the process of blood coagulation. Existence of pulse solutions, that is, positive stationary solutions with zero limit at infinity is studied. It is shown that such solutions exist if and only if the speed of the travelling wave described by the same system is positive. The proof is based on the Leray-Schauder method using topological degree for elliptic problems in unbounded domains and a priori estimates of solutions in some appropriate weighted spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.