Abstract
This paper is concerned with the existence of positive solutions for integral boundary value problems of Caputo fractional differential equations with p-Laplacian operator. By means of the properties of the Green’s function, Avery-Peterson fixed point theorems, we establish conditions ensuring the existence of positive solutions for the problem. As an application, an example is given to demonstrate the main result.
Highlights
Fractional differential equations have been proved to be valuable tools in the modeling of many phenomena in various fields of science and engineering, such as rheology, dynamical processes in self-similar and porous structures, heat conduction, control theory, electroanalytical chemistry, chemical physics, economics, etc
Many papers and books have appeared on fractional calculus and fractional differential equations
In [ ], Liu et al studied the solvability of the Caputo fractional differential equation with boundary value conditions involving the p-Laplacian operator
Summary
Fractional differential equations have been proved to be valuable tools in the modeling of many phenomena in various fields of science and engineering, such as rheology, dynamical processes in self-similar and porous structures, heat conduction, control theory, electroanalytical chemistry, chemical physics, economics, etc. There are few studies of the existence of positive solution of fractional differential equations with the p-Laplacian operator; see [ – ] and the references therein. In [ ], Liu et al studied the solvability of the Caputo fractional differential equation with boundary value conditions involving the p-Laplacian operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.