Abstract

We prove the existence of planar travelling wave solutions in a reaction-diffusion-convection equation with combustion nonlinearity and self-adjoint linear part in Rn, n≧1. The linear part involves diffusion-convection terms and periodic coefficients. These travelling waves have wrinkled flame fronts propagating with constant effective speeds in periodic inhomogeneous media. We use the method of continuation, spectral theory, and the maximum principle. Uniqueness and monotonicity properties of solutions follow from a previous paper. These properties are essential to overcoming the lack of compactness and the degeneracy in the problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.