Abstract

In this paper we consider a class of partially observed semilinear stochastic evolution equations on infinite dimensional Hilbert spaces subject to measurement uncertainty. We prove the existence of optimal feedback control law from a class of operator valued functions furnished with the Tychonoff product topology. This is an extension of our previous results for uncertain systems governed by deterministic differential equations on Banach spaces. Also we present a result on existence of optimal feedback control law for a class of uncertain stochastic systems modeled by differential inclusions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.