Abstract

In this paper, we investigate the existence of multiple solutions for Kirchhoff-type equations involving nonlocal integro-differential operators with homogeneous Dirichlet boundary conditions as follows: {M(∫R2n|u(x)−u(y)|p|x−y|n+spdxdy)(−△)psu=λ|u|q−2u+αα+β|u|α−2u|v|β,in Ω,M(∫R2n|v(x)−v(y)|p|x−y|n+spdxdy)(−△)psv=μ|v|q−2v+βα+β|v|β−2v|u|α,in Ω,u=v=0,in Rn∖Ω,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ \\textstyle\\begin{cases} M(\\int_{\\mathbb{R}^{2n}}\\frac{|u(x)-u(y)|^{p}}{|x-y|^{n+sp}}\\,dx\\, dy)(-\\triangle )_{p}^{s}u=\\lambda|u|^{q-2}u+\\frac{\\alpha}{\\alpha+\\beta}|u|^{\\alpha -2}u|v|^{\\beta}, & \\mbox{in }\\Omega, \\\\ M(\\int_{\\mathbb{R}^{2n}}\\frac{|v(x)-v(y)|^{p}}{|x-y|^{n+sp}}\\,dx\\, dy)(-\\triangle )_{p}^{s}v=\\mu|v|^{q-2}v+\\frac{\\beta}{\\alpha+\\beta}|v|^{\\beta -2}v|u|^{\\alpha}, & \\mbox{in }\\Omega, \\\\ u=v=0, & \\mbox{in }\\mathbb{R}^{n}\\setminus\\Omega, \\end{cases} $$\\end{document} where Ω is a smooth bounded set in mathbb{R}^{n}, n>ps with sin(0,1) fixed, {lambda,mu}>0 are two parameters, 1< q< p< p(tau+1)<alpha+beta<p^{*}, p^{*}=frac{np}{n-sp}, M is a continuous function, given by M(h)=k+lh^{tau}, k>0, l,taugeq0, and (-triangle)_{p}^{s} is the fractional p-Laplacian operator. We will prove that the problem has at least two solutions by using the Nehari manifold method and fibering maps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call